Enhancing Navy Bean Production Through Development of Arcelin Based Bruchid Resistant Varieties in Ethiopia

Berhanu Amsalu Fenta¹, Kassaye Negash¹, Kidane Tumsa¹, Tigist Shiferaw¹, Dagmawit Tsegaye,¹ Mulugeta Teamir¹, Clare Mugisha Mukankusi², Stephen E. Beebe³.

¹Ethiopian Institute of Agricultural Research, Melkassa Agricultural Research Centre, National Lowland pulse Improvement Program, P.O. box 436, Adama, Ethiopia.

²International Center for Tropical Agriculture (CIAT), P. O. Box 6247, Kampala, Uganda. ²International Center for Tropical Agriculture(CIAT), Cali, Colombia

Introduction

Navy beans are among the export commodities for Ethiopia contributing over 100 million USD per annum in export earnings. However, their productivity is relatively low owing to both field and post-harvest biotic and abiotic stresses. Among the post-harvest problems, bruchids (Zabrotes subfasciatus) are the major problem for the navy bean farmers, bulkers and exporters. In the warmer areas like the Central Rift Valley of Ethiopia, this species is known to cause post harvest grain losses estimated up to 38% with equivalent weight loss 3.2% (Negasi, 1994). Grain losses of up to 60% after only 3-6 months in storage have also been reported (Getu et al., 2003). Although different cultural and chemical options have been recommended for the control of bruchids, most of these practices are not oftenly used by farmers because of chemical supply shortages, cost and concerns related to environmental hazards and food safety. Therefore, development of environmentally safe, sustainable and feasible control measures like host plant resistance is probably the best option to manage bruchids in common bean, particularly amongst smallholder farmers. Antibiosis expressed as adverse effects of seed protein arcelin in extending the time of adult emergence, growth and lifecycle of these insects (Velten et al., 2008) in wild bean accessions has been exploited in developing bruchid resistant common bean germplasm. Even though promising results were achieved from past breeding efforts in terms of developing genotypes with arcelin based resistance (Cardona, 2004; Beneke, 2010), such efforts have not yet resulted in a release of commercial variety for wider production. Thus, the objective of the study was to develop high yielding, disease and bruchid resistance navy bean varieties from arcelin containing recombinant inbred lines.

Methods

Multi-environment trials were conducted on 15 arcelin-containing inbred lines (RAZ lines) sourced from CIAT and a commercial check variety, (Awash 1), at eight locations from 1700- 1900masl altitude testing locations for three cropping seasons in the period 2011-2013. The trial was set up as a 4x4 triple lattice design and the recommended field cultural practices applied. Phenological, morphological, productivity and disease resistance related data was recorded. Furthermore, the lines were subjected to artificial infestation of the insects to confirm the resistance. Mass rearing of the insects was done using a susceptible variety at an average room temperature of 27°C & relative humidity of 70%. Twenty grams of seed were placed in transparent plastic jars (6 cm x 7 cm) with an opening at one end for free air circulation. The experiment was laid out in a CRD with three replications. Each jar was infested with 5 female & 5 male newly emerged bruchids and the jars left for 10 days to allow oviposition. Thereafter the jars were opened and the number of emerged adult bruchids was counted every second day starting from the first emergence and continued until the last emergence.

Contact: Berhanu Amsalu Fenta (PhD) Ethiopian Institute of Agric. Research, (EIAR) Melkassa Agric. Research Centere, P.O.Box 436, Adama, Ethiopia Email: berhanufenta@gmail.com

Results

- The multi- location trials revealed that the overall mean yield performance of three RAZ lines (RAZ-42, RAZ-11 and RAZ-119) were greeter than 2t/ha and exceeded the standard check Awash 1 by 12%. These lines also exhibited combined resistance to major diseases (Common bacterial blight, halo blight, angular leaf spot and anthracnose) across tested sites.
- The artificial infestation of these lines, showed highly sig. differences (P < 0.01) among the genotypes for all characters measured for bruchid resistance.
- RAZ lines demonstrated resistance by having 0-2 index of susceptibility (IS= (log (progeny per infesting female / days to adult emergence)*100) and seed weight loss from 0-5.8%. Where as Awash 1 exhibited SI of 9 and seed weight loss of 46%.

Table 1. Mean yield and disease score (for eight locations) of arcelin containing bean lines for three years

rt No Va 1 RA 2 RA 3 RA 4 RA	ariety AZ 36 AZ 34 AZ 44 AZ 42	20111 2064 1848 1896	2012 1934 1838	2013 (1545	6. Mean HI	3 CE	BB Ar	ht l
1 RA 2 RA 3 RA 4 RA	AZ 36 AZ 34 AZ 44 AZ 42	2064 1848 1896	1934 1838	1545				
2 RA 3 RA 4 RA	AZ 34 AZ 44 A7 42	1848 1896	1838		1847	3.5	3.4	2.8
3 RA 4 RA	AZ 44 AZ 42	1896		1682	1789	3	3.1	2
4 R/	17 42		1912	1540	1783	3.8	3.4	2.2
E D/		2199	2137	1804	2047	3.8	3.2	2.1
- 3 N/-	AZ 11 - 1	2064	1936	1480	1827	3.4	3.8	2.2
6 R/	AZ 11	1931	2044	1721	1899	3.6	3.9	2.4
7 R/	AZ 120	1914	1854	1775	1848	3.9	3.9	2.6
8 R/	AZ 114	1490	1062	1319	1290	3.9	4	3.1
9 R.4	AZ 2	1868	1578	1186	1544	4.6	4.5	2.7
10 RA	AZ 119	1940	1916	1825	1894	4	3.9	2.5
11 RA	AZ 19	1661	1577	1516	1585	4.1	3.9	2.6
12 RA	AZ 138	1608	1518	1318	1481	3.5	3.7	2.7
13 RA	AZ 40	1760	1802	1601	1721	3.5	3.5	2.5
14 RA	AZ 111	1475	1585	1272	1444	3.7	3.5	2.4
15 Ne	evy Line 47	2043	1924	1455	1807	3.5	3.8	4.4
16 Av	wash-1	2080	1954	1226	1753	3.4	3.8	4

Conclusions

Generally, arcelin containing inbred lines (RAZ-11, RAZ-36, RAZ-2, RAZ-44, RAZ-120, and RAZ-40 showed consistently complete resistance for bruchids. However, based on grain yield, RAZ 42 and RAZ 11 were higher yielders and resistant to the major bean diseases. These two varieties have been proposed for variety verification trials and eventual release. However, before releasing these varieties, nutrition related tests like anti-nutritional factors (phytate, polyphenols, Saponins, Hemoglobin etc.) and processing effect (blanching, heat treatment, soaking) on arcelin content will be studied. Results from these tests will used by the Ethiopian Public Health Institute (EPHI) to assess conformity and advise the variety release process. The release of these varieties will enhance the production of navy beans, reduce postharvest loss & improve the benefits of growers as well as traders from bean production and marketing.

27 February – 4 March 2016