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This article examines the impact that misreporting adoption status has on the identification and

estimation of causal effects on productivity. In particular, by comparing measurement error-ridden

self-reported adoption data with measurement-error-free DNA-fingerprinted adoption data, we in-

vestigate the extent to which such errors bias the causal effects of adoption on productivity. Taking

DNA-fingerprinted adoption data as a benchmark, we find 25% “false negatives” and 10% “false

positives” in farmers’ responses. Our results show that misreporting of adoption status is not exoge-

nous to household characteristics, and produces a bias of about 22 percentage points in the produc-

tivity impact of adoption. Ignoring inherent behavioral adjustments of farmers based on perceived

adoption status has a bias of 13 percentage points. The results of this article underscore the crucial

role that correct measurement of adoption plays in designing policy interventions that address

constraints to technology adoption in agriculture.
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Accurate measurement of adoption status is
crucial for estimating the productivity impacts
of adoption. In most adoption studies, data
from household surveys are used to measure
adoption rates with the assumption that farm-
ers’ self-reported data correctly reflect their
true adoption status (e.g., Shiferaw et al. 2014;
Zeng et al. 2015). However, self-reported

adoption status is possibly misclassified, and
failure to account for such misclassification
may result in biased estimates with implications
for policy.1 In adoption studies, misclassifica-
tion occurs when farmers wrongly report treat-
ment status, that is, report being adopters when
they are non-adopters (“false positives”) or
report being non-adopters when they are
adopters (“false negatives”). This misclassifica-
tion may occur due to seed market imperfec-
tions (e.g., seed adulteration by dealers), lack
of awareness and technical information on
the characteristics of improved varieties
(Kosmowski et al. 2016; Maredia et al. 2016),
seed recycling and poorly-regulated extension
and variety naming systems (Ilukor et al. 2017).

Irrespective of the source of misreporting
of adoption status, causal identification in
the presence of misclassification is nontrivial.2
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1 In this article, productivity is defined as output/ha.
Therefore, productivity and yield are used interchangeably.

2 Note that measurement error in a binary variable is neces-
sarily negatively correlated with the underlying true value of the
variable, and is thus non-classical.
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A relatively small but growing body of litera-
ture (Aigner 1973; Frazis and Loewenstein
2003; Mahajan 2006; Lewbel 2007; Hu and
Schennach 2008; Meyer, Mok, and Sullivan
2009; Battistin and Sianesi 2011; Kreider
et al. 2012; Almada, McCarthy, and Tchernis
2016; Gundersen, Kreider, and Pepper 2017)
has suggested a variety of causal identifica-
tion strategies in the presence of misclassifi-
cation. The identification strategies in the
above-mentioned studies are mostly pro-
posed for nonparametric and semiparametric
approaches with strong distributional
assumptions. For example, both Aigner
(1973) and Lewbel (2007) assumed exoge-
nous treatment status and misclassification.
Brachet (2008) derived a procedure for esti-
mating treatment effects assuming an endog-
enous treatment status and exogenous
misclassification. Therefore, the identification
strategies proposed in the above-mentioned
studies cannot be extended to the case of en-
dogenous misclassification. Misclassification
in reporting adoption status is potentially en-
dogenous since farmers who misreport adop-
tion status are more likely to be different
from those who do not misreport in both ob-
served and unobserved characteristics that af-
fect productivity. There could thus be
significant biases associated with endogenous
misreporting for a potentially endogenous
treatment variable. To our knowledge, only
Nguimkeu, Denteh, and Tchernis (2017) con-
sidered the consequences of endogenous mis-
reporting for a potentially endogenous
treatment variable by exploiting the partial
observability model of Poirier (1980).3

Results from Nguimkeu, Denteh, and
Tchernis (2017) suggest that endogenous mis-
reporting in a potentially endogenous treat-
ment variable may have not only attenuation
bias but also sign-reversal effects.
Considering such biases is therefore critical
in the impact evaluation literature as both the
size and the direction of estimated effects are
key indicators for policy makers to improve
program implementation or to evaluate the
cost effectiveness of alternative interventions.

This article uses a unique data set that com-
bines self-reported and DNA-fingerprinted
adoption data to assess the bias in the esti-
mated treatment effects when the treatment
indicator is endogenous and endogenously

misclassified. The true adoption status based
on DNA-fingerprinted data is free from mis-
classification but is still endogenous due to
self-selection into treatment (existence of ob-
served and unobserved heterogeneities be-
tween adopters and non-adopters). As such,
the usual instrumental variable (IV) proce-
dure that takes into account the binary nature
of the adoption variable will provide consis-
tent estimates. However, when using self-
reported adoption status from the household
survey, IV estimates can be biased due to en-
dogenous misclassification. Therefore, in ad-
dition to correcting for endogeneity bias
stemming from unobserved heterogeneity be-
tween adopters and non-adopters (which is
an omitted variable bias), accounting for
endogeneity bias generated by the non-
classical measurement errors is necessary for
consistency. The difference in the size and di-
rection of parameter estimates between the
true adoption status (measured by DNA-
fingerprinted adoption data) and the surro-
gate adoption status (measured from the
household survey) should therefore deter-
mine the size and the sign of misclassification
bias.

To the best of our knowledge, this is the
first study to tackle the issue of misclassifica-
tion in adoption studies. Focusing on the
adoption of improved cassava varieties in
Nigeria, this article offers the following con-
tributions. First, it provides empirical evi-
dence on misclassification rates from
household surveys, including household-level
correlates of misclassification. Second, it pro-
vides a reliable estimate for a highly policy-
relevant parameter, namely the return from
adoption in the presence of endogenous
adoption status and misclassification. Third,
the results of this article can provide an alter-
native insight into some of the discrepancies
between the results of randomized control
trials (RCTs) and observational data in the
development economics literature since a
well-designed RCT is free from misclassifica-
tion. Fourth, the article also offers an alterna-
tive explanation for the seemingly
paradoxical low adoption rate but high
returns to agricultural research in Africa
(Duflo, Kremer, and Robinson 2008; Suri
2011), focusing on the incidence of false neg-
atives in farmers’ responses from household
surveys. The rest of the article is organized as
follows. The next section provides an over-
view of the data and the empirical economet-
ric strategy. The empirical results are

3 Nguimkeu, Denteh, and Tchernis (2017) considered only
“false negative“ cases.
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presented and discussed in the following
section, while the last section concludes with
policy implications and provides some open
questions for further research.

Data Sources and Empirical Strategy

Data Sources

This study is based on the 2015/16 cassava
monitoring survey (CMS) in Nigeria. The
CMS is a nationally representative sample of
2,500 cassava producers in Nigeria. Figure 1
shows a map of the survey villages and the
distribution of the sample households. A
multistage stratified sampling design was
employed to select the sample households.
First, the list of Enumeration Areas (EAs)
for conducting national census in Nigeria was
obtained from the National Population
Commission (NPC). The list of EAs by Local
Government Areas (LGA) was obtained for
the 16 states that together account for more
than 80% of the total production of cassava
in Nigeria. These states were grouped into
four geopolitical zones: south-west, south-
south, south-east, and north.

From each region, 125 EAs were selected
using the probability proportional to size
(PPS) sampling approach. Finally, from each

EA, random samples of five cassava-growing
households were selected for interview. This
provided a sample size of 625 households per
region and a total of 2,500 farming house-
holds. From each surveyed household, infor-
mation was collected on self-reported
treatment status (adoption of improved cas-
sava varieties) at the variety- and plot-level,
as many of the households owned more than
one plot of cassava and grew different varie-
ties in different plots. From each identified
variety in the farm plot, samples of cassava
leaves were collected for DNA-fingerprinting
analysis. In addition to treatment status, data
were collected on socio-economic character-
istics of the households, as well as other out-
comes of interest such as production. The
DNA-fingerprinting process is one of the
novel aspects of our data. To date, several
varietal identification methods for tracking
the adoption of improved varieties have been
employed but most have inherent uncertainty
levels. Compared to other conventional vari-
etal identification methods, the DNA-
fingerprinting technique offers a reliable
method to accurately identify varieties grown
by farmers, thereby allowing a credible mea-
surement of adoption status. In particular, in
the presence of input market imperfections
(when the formal seed system is non-existent
or imperfect), misclassification can be

Figure 1. Map of the study area
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pervasive as farmers mostly rely on informal
seed sources. Unlike phenotype-based meth-
ods, DNA-based varietal identification is in-
dependent of environmental conditions or
stage of plant growth (Rabbi et al. 2015;
Maredia et al. 2016).4

Estimation Strategy

We first present our causal identification
strategy. We then show how the misclassifi-
cation of treatment status affects the true
impacts on outcome variables. Let Yi be the
outcome variable of interest, that is, pro-
ductivity. Assuming that productivity is lin-
early affected by the k-vector of exogenous
controls xi and the true binary treatment in-
dicator T�i , we have the following
relationship:

ð1Þ Yi ¼ bT�i þ ax
0

i þ �i:

Similarly, true adoption status is modelled
by

ð2Þ T�i ¼ 1½cz
0

i þ vi � 0�

where zi is a vector of determinants of
adoption including the exclusion restrictions
and 1½�� is an indicator function whose value
is 1 if the statement inside the brackets is
true, and 0 otherwise. Note that while the
treatment variable T�i does not suffer from
misclassification, it is endogenous because of
sample selection so that ordinary least
squares (OLS) estimates of equation (1)
would be biased. Selection bias may occur be-
cause farmers who choose to adopt improved
cassava varieties may share some common
unobserved characteristics, such as better
farming skills and management abilities,
which are clearly correlated with productivity
(i.e., covðT�i ; �iÞ 6¼ 0). An IV regression ap-
proach that takes the binary nature of the en-
dogenous treatment variable into account
will, therefore, correct such biases and pro-
vide consistent estimates in the presence of
unobserved heterogeneity between adopters
and non-adopters. This means that if treat-
ment status T�i is measured using DNA-
fingerprinting, b can be consistently esti-
mated using an IV estimation strategy. The

challenge for identification is therefore to
find a variable that directly affects adoption
decision but not productivity (exclusion re-
striction). In this article, we use the self-
reported adoption status of neighbors and
friends as an identifying instrument
(Krishnan and Patnam 2013).

However, in most applications where
measurement error-free data (such as DNA-
fingerprinted adoption data) are not avail-
able, T�i is not observable to the researcher.
Therefore, only a surrogate Ti, the farmer’s
self-reported treatment status (which is po-
tentially a misclassified version of the true
treatment status T�i Þ is observed. In the pres-
ence of such misclassification, the researcher
can only estimate the following operational
relationship,

ð3Þ Yi ¼ bTi þ ax
0

i þ ð�i � buiÞ

where

ð4Þ Ti ¼ T�i þ ui:

The measurement error ui takes on values
(�1, 1) in the presence of misclassification
and a value of zero otherwise. In most appli-
cations (e.g., with a continuous regressor),
the measurement error (uiÞ is considered to
be classical and hence covðT�i ; uiÞ50.
However, in our case the measurement er-
ror is non-classical as it is negatively corre-
lated with the underlying true value of the
treatment status, that is, covðT�i ; uiÞ < 0.
Moreover, the self-reported treatment Ti is
also endogenous (i.e.; covðTi; �iÞ 6¼ 0Þ both
because it inherits the endogeneity of the
true treatment T�i , and because the associ-
ated misclassification is potentially endog-
enous, that is, covð�i; uiÞ 6¼ 0. Hence,
neither the OLS nor the above-mentioned
IV strategy would produce consistent esti-
mates in this case. To see this, consider a
simpler model without the covariates xi,
that is,

ð5Þ Yi ¼ bT�i þ �i

so that, as explained above, the operational
model is given by

ð6Þ Yi ¼ bTi þ �i � bui:

Then, the asymptotic bias of the OLS esti-
mator of the treatment effect b is given by

4 A detail description of the DNA-fingerprinting process is
presented in the online supplementary material.
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ð7Þ plim b̂OLS�b¼cov Ti;Yið Þ
var Tið Þ

�b

¼cov Ti;�ið Þ�bcov Ti;uið Þ
var Tið Þ

¼rT��þru��brT�u�br2
u

r2
T� þ2rT�uþr2

u

6¼0:

Likewise, when covðT�i ; �iÞ 6¼0 and
covð�i;uiÞ 6¼0, parameter estimates will still be
inconsistent, even if the above mentioned IV
strategy is used (Aigner 1973; Hausman,
Abrevaya, and Scott-Morton 1998; Black,
Berger, and Scott 2000; Frazis and
Loewenstein 2003; Mahajan 2006; Lewbel
2007; Brachet 2008; Hu and Schennach 2008;
Nguimkeu, Denteh, and Tchernis 2017).
Specifically, assume that zi is a valid instru-
ment for the true treatment T�i , and that it is
appropriately excluded from the outcome
equation. Then, the probability limit of the
IV estimator is given by5

ð8Þ plim b̂IV ¼
cov E½Tijzi�;Yið Þ

varðE½Tijzi�Þ

¼ b
cov E½Tijzi�;T�i
� �

varðE½Tijzi�Þ
¼ b

covðE½Tijzi�;Fvðcz0iÞÞ
varðE½Tijzi�Þ

where E½Tijzi� is the predicted value of Ti in
the first-stage regression, Fvð:Þ is the cdf of v, and
Fvðcz0iÞ is the conditional expectation of T�i
implied by equation (2). Denote by q0 zið Þ¼ Pr
ui¼1jvzi½ � and q1 zið Þ¼Pr ui¼�1jvzi½ � the

probabilities of “false positives” and “false neg-
atives”, respectively. Then, we have
E½Ti zij � ¼q0 zið Þþ ½1�q0 zið Þ�q1 zið Þ�Fv cz0iÞ

�
.

Hence,

ð9Þ plim b̂IV¼

b
covðq0ðziÞþ½1�q0ðziÞ�q1ðziÞ�Fvðcz0iÞ;Fvðcz0iÞ

�

varðq0ðziÞþ½1�q0ðziÞ�q1ðziÞ�Fvðcz0iÞÞ
6¼b:

That is, b̂IV is inconsistent (unless there is
no misclassification), and we cannot sign the
bias in general. However, in the special case
where the misclassification probabilities are
constant, the above equation reduces to

ð10Þ plim b̂IV ¼
b

1� q0 � q1
> b

which leads to an expansion bias in IV as
found in Black, Berger, and Scott (2000) and
Brachet (2008). While previous studies have
attempted to address the bias associated with
the measurement error focusing on partial
identification using non-parametric
approaches (see Mahajan 2006; Lewbel 2007;
Hu and Schennach 2008), the focus of this ar-
ticle is to provide point estimates using vali-
dation data.6 Note that with validation data,
we have q0 zð Þ ¼ q1 zð Þ ¼ 0 and the IV estima-
tor is consistent, that is, plim b̂IV ¼ b.

Descriptive Statistics

This section presents our main outcome indi-
cator (cassava yield) and the socio-economic
and plot-level variables used in the regression
analysis. Note that yield (output/ha) was
calculated as the ratio of total output to GPS-
measured plot size. In our setting, GPS meas-
ures were taken for all cassava plots from all
surveyed households. However, our produc-
tion data were based on self-reported values
and hence they may potentially suffer from
measurement errors. Estimating the produc-
tion of cassava from a given plot is notori-
ously difficult due to continuous harvesting
and a lack of harvest record-keeping by farm-
ers. Taking this measurement issue into ac-
count, we collected production data in two
rounds. The first was conducted in July/
August 2015 and the second occurred in
February/March 2016. In the first round, we
collected data on the quantity of cassava al-
ready harvested in a specific plot as well as
the expected quantity to be harvested in the
future. In the second round, we collected

5 See the online supplementary material for a detailed deriva-
tion of the inconsistency of the IV method with misclassified
data.

6 Most of the identification strategies proposed in the litera-
ture assume that misreporting probabilities are independent of
covariates, conditional on treatment status (Aigner 1973;
Hausman, Abrevaya, and Scott-Morton 1998; Black, Berger, and
Scott 2000; Kane, Rouse, and Staiger 1999; Frazis and
Loewenstein 2003). Others, such as Mahajan (2006), Lewbel
(2007), and Hu and Schennach (2008) assume that the misclassi-
fied binary variable is exogenous. In general, all the identification
strategies proposed in the literature so far focus on partial identi-
fication by providing nonparametric bounds (both upper and
lower). Nguimkeu, Denteh, and Tchernis (2017) suggested a two-
step procedure in the presence of endogenous misreporting for a
potentially endogenous treatment variable. In particular, they
suggest to obtain the predicted probabilities of true participation
(T̂�i ) using Poirier’s (1980) partial observability model and use it
in the outcome equation as a measure of treatment. These
authors’ approach, however, only solves for one-way misreport-
ing (e.g., false negatives only).
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production values that had been harvested
since the first round. Production data were
collected using local measurement units since
non-standard production units are used by
the majority.7 Table 1 presents cassava yield
levels differentiated by self-reported and
DNA-fingerprinted adoption status.

We found significantly higher yields among
adopters, irrespective of the way adoption
status was measured. However, the yield dif-
ference between adopters and non-adopters

is higher when DNA-fingerprinted data are
used. This observed difference in cassava
yield between adopters and non-adopters is
only indicative of correlations and cannot be
used to make causal inferences regarding the
impacts of adoption on cassava yields without
controlling for other confounding factors.
Table 2 presents descriptive statistics for
socio-economic and plot-level variables. For
the sake of convenience, we present mean
differences based on self-reported adoption
status. Household characteristics such as age,
household size, education, and membership
in different social groups, as well as wealth
indicators such as livestock ownership

Table 2. Descriptive Statistics of Socio-Economic Characteristics Based on Self-Reported
Adoption Status

Full Sample
(N¼ 5,295)

Adopters
(N¼ 2,883)

Non-adopters
(N¼ 2,412)

Mean
Diff.

Household size (number of members) 4.60 4.84 4.31 0.53***
Education (years of schooling) 8.70 9.04 8.28 0.76***
Age (measured in years) 51.64 51.00 52.41 �1.41***
Sex (1¼ male, 0¼ otherwise) 0.89 0.91 0.87 0.04***
Livestock ownership (TLU) 0.91 0.99 0.81 0.18***
Access to extension (1¼ yes, 0¼ no) 0.36 0.46 0.25 0.21***
Access to credit (1¼ yes, 0¼ no) 0.45 0.50 0.39 0.11***
Mobile phone ownership (1¼yes, 0 ¼no) 0.97 0.98 0.95 0.03***
Membership in credit and saving associations

(1¼yes, 0¼no)
0.34 0.37 0.31 0.06***

Membership in cooperatives (1¼yes, 0¼no) 0.25 0.30 0.20 0.1***
Membership in cassava growers’ association

(1¼yes, 0¼no)
0.21 0.27 0.14 0.13***

Plot with good soil fertility (1¼good, 0¼ otherwise) 0.74 0.78 0.69 0.09***
Plot with medium soil fertility

(1¼medium, 0 ¼otherwise)
0.24 0.20 0.29 �0.09***

Plot with poor soil fertility (1¼poor, 0¼ otherwise) 0.02 0.02 0.03 �0.01
Plot managed by men (1¼yes, 0¼no) 0.36 0.42 0.30 0.12***
Plot managed by women (1¼yes, 0¼no) 0.49 0.47 0.51 �0.04***
Plot managed jointly (1¼yes, 0¼no) 0.15 0.11 0.19 �0.08***
Plot is intercropped (1¼yes, 0 ¼no) 0.55 0.55 0.56 �0.01
Labor use (MD/ha) 74.9 84.5 63.5 21
Fertilizer use (1¼yes, 0¼no) 0.33 0.30 0.37 �0.07***
Herbicide use (1¼yes, 0¼no) 0.47 0.54 0.38 0.16***
Pesticide use (1¼yes, 0¼no) 0.09 0.11 0.07 0.04***
Friend is adopter (1¼yes, 0¼no) 0.50 0.59 0.39 0.20***
Neighbor is adopter (1¼yes, 0¼no) 0.44 0.68 0.15 0.53***

Table 1. Cassava Yield by Adoption Status (t/ha)

Full Sample
(N¼ 5,295)

Self-reported Adoption Status DNA-fingerprinted Adoption Status

Adopters
(N¼ 2,883)

Non-adopters
(N¼ 2,412)

Diff Adopters
(N¼ 3,645)

Non-adopters
(N¼ 1,650)

Diff

Cassava yield 14.7 15.7 13.4 2.3*** 16.2 11.4 4.8***

7 Implications of using the self-reported production value is
discussed in the conclusions.
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measured in terms of tropical livestock units
(TLU) are included to control for possible
heterogeneities between adopters and non-
adopters. We hypothesize that these house-
hold characteristics affect farmers’ adoption
decisions as well as their productivity levels.
We found statistically significant differences
between adopters and non-adopters for most
of the control variables. In general, adopters
tend to be younger, more educated, and
wealthier (have more livestock). Moreover,
adopters have better access to extension and
credit.

We also included plot-level variables and
input use to control for plot-level heterogene-
ity. Our plot-level controls are mainly for soil
fertility, input use, and agronomic practices.
For example, application of chemical fertil-
izers is quite low (chemical fertilizer was ap-
plied only in about 33% of the plots). In
about 55% of the plots, cassava is inter-
cropped with other crops.8 Even though cas-
sava can be grown in fragile soils, our survey
results suggest that farmers tend to plant the
crop in fertile soils. For instance, in about
74% of the cassava plots, farmers reported
that the fertility level of the soil was good.

Results

Extent of Misclassification

In our survey, we identified more than 114 cas-
sava varieties. Of these, about 42% were im-
proved and the remaining were landraces.
Table 3 reports misclassification in treatment
status (both “false positives” and “false neg-
atives”) by comparing adoption data from the
household survey with DNA-fingerprinted
data.

Because adoption rates from DNA-
fingerprinted data are error-free, we used
them as a benchmark to calculate misclassifi-
cation rates from the household survey. Our
results show that both false positives and
false negatives are prevalent. However, the
incidence of false negatives is significantly
higher. This result is consistent with other
studies that documented the presence of per-
sistent false negatives in the U.S. food stamp

program (Bollinger and David 1997; Marquis
and Moore 2010; Almada, McCarthy, and
Tchernis 2016). As shown in table 3, 25% of
the responses are false negatives and 10% are
false positives.9 This implies that in about
25% of the plots farmers identified improved
varieties as landraces and in about 10% they
identified landraces as improved varieties.
Our data also show a high correlation between
misclassification and the underlying features
of the cassava seed system. According to our
survey, more than 70% of the adopters obtain
planting materials through informal local ex-
change and most of them were not able to
identify the varieties they grow by name. For
example, the most popular improved variety,
“TMS30572”, has an adoption rate of 17.5%
(based on DNA-fingerprinting). From our sur-
vey, we found 237 different names for this va-
riety. However, despite its popularity, only
one farmer could identify it by its official re-
lease name. In most of the villages, this variety
is called Agric. However, there are about 43
other varieties that are also called Agric by
farmers. Of these 43 varieties, 15 are im-
proved and 28 are landraces. This suggests
that a lack of proper variety naming, as well as
weak dissemination efforts play a role in the
observed high misclassification rates of im-
proved varieties. Overall, the above results
suggest that adoption data from household
surveys cannot be relied upon in estimating
the productivity effects of adoption.

Determinants of Correct Classification

In this section we examine whether misclassi-
fication is exogenous to household character-
istics. This assumption has been commonly
used as an important criterion for parameter
identification in several studies (Aigner
1973; Black, Berger, and Scott 2000; Frazis

Table 3. Misclassification Rate of Adoption
Status at the Plot Level

HH Surveys

DNA Adopter Non-adopter

Adopter 43.7 25.2
Non-adopter 10.7 20.4

8 Note that farmers also practice relay cropping. In Nigeria,
cassava is mostly relay cropped following maize. The maize is of-
ten harvested before the cassava develops canopy. Note that in
some plots farmers mix improved varieties with local varieties.
Thus, some of the adopters are “partial adopters”.

9 Given this result, the conditional probability of false nega-
tives becomes 36%, calculated as 25/(25þ 47)) and the condi-
tional probability of false negatives becomes 34.4%, calculated
as 10.7/(10.7þ 20.4).
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and Loewenstein 2003; Brachet 2008).
In particular, the analysis is intended to un-
derstand household-level correlates of cor-
rect identification of improved cassava
varieties. We address this question using the
following operational Probit specification,

ð11Þ Yip ¼ bx
0

i þ vi

where Yip; is an indicator of classification by
household i at plot p. For each plot, Yip takes
a value of one if farmers correctly identify the
improved varieties they grow, and zero other-
wise. To add further insights, we also esti-
mated the determinants of false positives and
false negatives separately using the above
specification. For false negative cases, the de-
pendent variable takes a value of one if a
farmer wrongly identifies an improved variety
as landrace in a specific plot, and zero other-
wise. Similarly, for false positive cases, the de-
pendent variable takes a value of one if a
farmer wrongly identifies a landrace as im-
proved variety in a specific plot, and zero oth-
erwise. Results are reported in table 4. Our
findings indicate that correct identification of
improved varieties is correlated with a range
of household characteristics. In particular,
three sources of heterogeneity largely explain
the probability of correct identification of im-
proved varieties. These include the level of
education, access to information (such as mo-
bile phone ownership, access to extension and
membership to associations), and location.

Farmers with access to more structured
sources of information (mobile phone owner-
ship, access to extension, and formal and in-
formal associations) and with a better
educational level are more likely to identify
the improved varieties they grow in their
plots. We also found that farmers in northern,
south-western, and south-south Nigeria are
more likely to identify correctly the varieties
they grow compared to those in the south-
east. Mobile phone ownership, access to ex-
tension and membership in associations are
negatively correlated with the probability of
false negative responses. In addition, we find
that more educated households are less likely
to identify landraces as improved varieties.

Effect of Adoption on Productivity

OLS estimation results. In this section, we pre-
sent OLS results using both household survey

and DNA-fingerprinted adoption data. Results
are presented in table 5. The first column
presents results based on farmers’ self-
reported adoption status, whereas the second
column presents the results based on DNA-
fingerprinted data. Both models are estimated
at the plot level to account for plot-level heter-
ogeneities between adopters and non-
adopters. Parameter estimates on the adoption
of improved cassava varieties are 0.353 based
on self-reported adoption status and 0.467
based on DNA-fingerprinted adoption status.
This result suggests a yield advantage of 42%
to 60% for improved cassava varieties over
landraces.10 As such, misclassification results in
an attenuation bias as the productivity impacts
of adoption is 18 percentage points higher
when using DNA-fingerprinted adoption data
compared to self-reported adoption data.

This result is consistent with the findings of
previous studies (Aigner 1973; Hausman,
Abrevaya, and Scott-Morton 1998; Kane,
Rouse, and Staiger 1999; Black, Berger, and
Scott 2000; Frazis and Loewenstein 2003;
Mahajan 2006; Lewbel 2007; Hu and
Schennach 2008; Nguimkeu, Denteh, and
Tchernis 2017). In the absence of misclassifi-
cation, parameter estimates of the two mod-
els should be the same. Therefore, the large
discrepancy between the two results suggests
that measurement error is consequential.
OLS estimates could still be biased due to the
endogeneity of the adoption decision.11 The
next subsection presents IV estimation
results.

IV estimation results. We first present the
determinants of adoption (first-stage results
for our IV estimation) and then the determi-
nants of productivity (second-stage results for
our IV regression). First-stage results using
household survey data and DNA-
fingerprinted data are presented in table 6.
Note that the importance of estimating the
first stage using the two data sources may be
doubted as classical measurement error in
the dependent variable does not bias parame-
ter estimates. However, in our case, the mea-
surement error is necessarily non-classical
since our dependent variable is binary, and

10 Note that effects are calculated as 100[exp(coef.) - 1] since
the dependent variable is expressed in logarithm.

11 The R-squared in the outcome regressions are quite low.
This is not surprising given the cross-sectional nature of the data,
and it is not an issue either, given that the joint F-statistic is
highly significant.
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thus the measurement error in adoption status
cannot be independent of the true adoption
status, but rather is negatively correlated with
the true adoption status (Meyer and Mittag
2014). As such, parameter estimates can be-
come biased and may even assume the wrong
sign when misclassification is pervasive
(Nguimkeu, Denteh, and Tchernis 2017). The
results show that some socio-economic

characteristics have robust effects. For exam-
ple, household size has a positive and statisti-
cally significant effect on the probability of
adopting improved cassava varieties irrespec-
tive of the way adoption status is measured.
For education, we found a statistically signifi-
cant effect when using DNA-fingerprinted
data but it turned out to be insignificant when
using the farmer’s self-reported data. Theory

Table 4. Probit Model Estimates of the Determinants of Varietal Identification

Correct Classification False Negatives False Positives

Household size 0.024* �0.022 �0.011
(0.014) (0.017) (0.022)

Education 0.016** �0.008 �0.022***
(0.006) (0.008) (0.008)

Age �0.013 0.013 0.017
(0.013) (0.016) (0.017)

Age2 0.000 �0.000 �0.000
(0.000) (0.000) (0.000)

Sex �0.060 �0.090 0.188
(0.128) (0.150) (0.192)

Livestock ownership (TLU) 0.032* �0.018 �0.056**
(0.019) (0.021) (0.024)

Mobile phone ownership 0.479*** �0.575*** �0.052
(0.146) (0.169) (0.263)

Access to extension 0.156** �0.162** �0.022
(0.066) (0.075) (0.101)

Access to credit 0.046 �0.080 �0.045
(0.070) (0.086) (0.100)

Membership in credit and saving associations 0.082 �0.086 0.040
(0.067) (0.081) (0.116)

Membership in cooperatives 0.128* �0.178** �0.136
(0.071) (0.088) (0.111)

Membership in cassava growers’ associations 0.163** �0.249** 0.062
(0.081) (0.101) (0.113)

Plot intercropped 0.083 �0.058 �0.082
(0.051) (0.059) (0.072)

Plot with good soil fertility 0.007 0.080 0.106
(0.197) (0.233) (0.273)

Plot with medium soil fertility �0.055 0.208 0.057
(0.194) (0.232) (0.275)

Plot managed by men 0.152 �0.160 0.041
(0.125) (0.156) (0.155)

Plot managed jointly 0.063 �0.047 0.065
(0.113) (0.136) (0.149)

North 0.471*** �0.563*** �0.303*
(0.109) (0.120) (0.171)

South-West 1.026*** �1.029*** �0.453***
(0.111) (0.115) (0.167)

South-South 0.827*** �0.870*** �0.400**
(0.113) (0.116) (0.184)

Wald v2(27) 225*** 212.5*** 34.9***
Pseudo R2 0.117 0.137 0.03
Percentage correct predictions 0.66 0.724 0.80
N 5,295 3,645 2,883

Note: Standard errors clustered at the enumeration area level are reported in parentheses. Asterisks ***, **, and * refer to significance at the 1%, 5%, and

10% levels, respectively.
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predicts that more educated farmers are more
likely to adopt improved technologies. In this
regard, measuring adoption status using
DNA-fingerprinted data provides consistent
estimates. In addition, access to extension and
membership in cassava growers’ associations
are significant only when self-reported adop-
tion data are used. However, for some of the
socio-economic variables, effects differ not
only in magnitude but also in direction. For
instance, we found sign reversal effects for
mobile phone ownership. These results under-
score the fact that self-reported adoption sta-
tus can lead to erroneous conclusions about
the determinants of adoption and thus the
measurement of adoption is very important
for designing appropriate policy interventions
that address constraints to adoption.
Moreover, the results show that the selected
instruments are relevant since they are statis-
tically significant at a 1% level.

Second-stage results on the determinants
of productivity are presented in table 7. The
results suggest that the effect of adoption on
productivity ranges from 60% to 81%. Note
that in the first column, we did not control for
the endogeneity of misclassification, only
unobserved heterogeneity in adoption status
was controlled for. Since the second column
does not suffer from measurement error, we
controlled only for the endogeneity bias
caused by unobserved heterogeneities be-
tween adopters and non-adopters. Moreover,
our results suggest that using an instrumental
variable for the endogeneity of adoption de-
cision does not correct for the endogeneity
bias caused by endogenous misclassification.
This is because parameter estimates based
on self-reported adoption status are always
different from those estimates based on

DNA-fingerprinted data (see table 7).
Correcting such bias requires an instrument
to control for the endogeneity of adoption
status and an extra instrument to control for
the endogeneity of misclassification.

Another related problem, perhaps peculiar
to technological interventions in the agricul-
tural sector, is the inherent behavioral adjust-
ment of farmers based on their own
subjective self-assessment of adoption status.
Using a double-blind randomized experiment
for improved maize varieties in rural
Tanzania, Bulte et al. (2014) showed that be-
havioral adjustment effects can play an im-
portant role as productivity depends not only
on the improved variety itself (the effect as-
sociated with genetic gain) but also on the
use of complementary inputs and agronomic
practices (behavioral adjustments). For in-
stance, conditional on all other confounding
factors, a given farmer may allocate more la-
bor and fertilizer and apply better manage-
ment techniques to an improved variety
compared to a traditional variety. These ob-
served behaviors in input allocation can, in a
regression framework, be fully controlled for.
However, some dimensions of behavioral ad-
justment are unobserved and may introduce
bias.12 As such, it is difficult to distinguish
whether heterogeneity in returns is caused by
the technology itself or because of such unob-
served behavioural adjustments. For exam-
ple, false negative cases may introduce
downward bias due to negative behavioural
adjustment effects. Similarly, false positive
cases will also introduce downward bias due

Table 5. OLS Estimates of the Determinants of Cassava Yields in Nigeria Dependent
Variable: Log (Yield)

Self-reported Adoption Data DNA-fingerprinted Adoption Data

Improved cassava variety 0.353*** 0.467***
(0.051) (0.052)

Other controls Yes Yes
Location dummies Yes Yes
Joint F-statistic 8.6*** 11.1***
R2 0.075 0.09
N 5,295 5,295

Note: Standard errors clustered at the enumeration area-level are reported in parentheses. Asterisks ***, **, and * refer to significance at the 1%, 5%, and

10% levels, respectively. Other controls include use of fertilizer, herbicide and pesticide, plot management, intercropping and soil fertility status, ownership

of mobile phones, access to extension, access to credit, membership in a cassava growers association, membership in informal saving and credit institutions,

membership in cooperatives, livestock size in TLU, age, education, household size, and sex. Location dummies are as follows: north, south-west south-east

and south-south.

12 If such unobserved dimensions are time-invariant, they can
also be controlled through plot fixed effects.
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to positive behavioural adjustments.
Therefore, unbiased and consistent parame-
ter estimates on the impact of adoption can
only be obtained when behavioural adjust-
ment effects are zero. We tested for the pres-
ence of such behavioral adjustment effects by
interacting adoption with correct identifica-
tion (excluding false negatives and positives).
In this case, the treatment variable (correct
identification) takes a value of one if the

farmer correctly identifies improved varieties,
and zero if the farmer correctly identifies
landraces (false negative/positive responses
will have missing values).13 The interaction

Table 6. Probit Model Estimates of the Determinants of Adoption

Self-reported
Adoption Data

DNA- fingerprinted
Adoption Data

Household size 0.030** 0.029*
(0.015) (0.016)

Education 0.008 0.020***
(0.007) (0.007)

Age �0.001 �0.016
(0.016) (0.016)

Age2 0.000 0.000
(0.000) (0.000)

Sex �0.002 �0.176
(0.141) (0.147)

Livestock ownership (TLU) 0.011 0.051**
(0.020) (0.022)

Mobile phone ownership 0.404*** �0.437**
(0.149) (0.176)

Access to extension 0.244*** 0.094
(0.073) (0.081)

Access to credit 0.019 �0.043
(0.075) (0.077)

Membership to credit and saving associations 0.096 �0.089
(0.073) (0.084)

Membership in cooperatives 0.098 0.009
(0.079) (0.079)

Membership in cassava growers’ associations 0.341*** �0.037
(0.092) (0.092)

Plot intercropped 0.085 0.090
(0.055) (0.059)

Plot with good soil fertility �0.042 �0.116
(0.167) (0.201)

Plot with medium soil fertility �0.043 �0.012
(0.169) (0.189)

Plot managed by men 0.190 0.238*
(0.136) (0.124)

Plot managed jointly 0.083 0.242**
(0.126) (0.121)

Neighbor is adopter 1.440*** 0.152**
(0.075) (0.069)

Friend is adopter 0.166** 1.414***
(0.069) (0.080)

Wald v2(27) 636.3*** 410***
Pseudo R2 0.32 0.22
Percentage correct predictions 0.79 0.75
N 5,295 5,295

Note: Standard errors clustered at the enumeration area level are reported in parentheses. Asterisks ***, **, and * refer to significance at the 1%, 5%, and

10% levels, respectively. Regional dummies were included but not reported here.

13 Another way of estimating behavioral adjustment effects is
to compare “true adopters” with “false negatives” since the two
groups have the same technology, which is an improved variety.
In addition, effects can also be estimated by comparing “false
positives” with “true non-adopters”.
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term between the correct identification and
the adoption variable then captures the im-
proved variety and behavioral adjustment ef-
fect consistently. Results reported in column
3 of table 7 suggests that when both techno-
logical effects and unobserved behavioral
adjustments of farmers are considered, adop-
tion increases productivity by about 94%.
However, when such unobserved behavioral
adjustments of farmers are not considered,
adoption of improved varieties increases pro-
ductivity by 81% (column 2, table 7). These
results underscore the importance of captur-
ing not only pure technological effects
through innovative techniques of data collec-
tion such as DNA-fingerprinting but also the
subsequent behavioral adjustments of farm-
ers based on their own subjective assessment
of treatment status.

Finally, we summarized the magnitude of
biases due to endogeneity, misclassification
and behavioral adjustment effects. We find
that failure to control for misclassification of
adoption status (assuming adoption is exoge-
nous) biases productivity estimates by 18
percentage points (60% to 42% from OLS
estimates in table 5), while failure to control
for the endogeneity of the treatment status
biases productivity estimates by about 22
percentage points (based on estimates from
the DNA-fingerprinted adoption data
which ranges from 81.5% in table 7 to 60% in
table 5). Without the homogeneity assump-
tion, IV estimates are only local average
treatment effects (LATE) while OLS results
are average treatment effects (ATEs). Bias

due to misclassification is calculated using
OLS estimates while the bias due to endoge-
neity is calculated by comparing the naive
OLS with IV coefficients. Assuming homoge-
nous treatment effects (ATE¼LATE), our
results underscore that controlling for misclas-
sification is as important as controlling for
unobserved heterogeneity, at least in this case
study. In fact, the bias due to misclassification
can be similar to the bias due to the endogene-
ity of adoption decision. The magnitude of the
two biases is largely an empirical question and
depends on the severity of misclassification.
When misclassification is minor, controlling for
the endogeneity of adoption decision may be-
come more important than controlling for mis-
classification. Moreover, ignoring inherent
behavioral adjustments has an additional bias
of 13 percentage points (94%-81%).

Robustness check. In our main analysis, we
used neighbors/friends’ adoption decisions as
an identifying instrument. However, the ex-
clusion restriction can be violated if farmers
learn about productivity-enhancing techni-
ques in addition to improved varieties from
neighbors/friends. In our case, this is less
likely to make the instrument invalid. If farm-
ers learn about productivity-enhancing meth-
ods beyond learning about improved
varieties, then this will not be a concern as
our specification controls for management
practice, soil quality, and input use. In addi-
tion, farmers are less likely to learn about
unobservable characteristics of neighbors/
friends that makes them more productive.

Table 7. IV Regression Estimates of the Determinants of Cassava Yields in Nigeria
(Dependent Variable: Log (Yield))

1 2 3
Self-reported

Adoption Data
DNA-fingerprinted

Adoption Data
Interaction

Improved cassava variety 0.471*** 0.596***
(0.106) (0.119)

Improved cassava variety*Correct
identification

0.663***

(0.108)
Other controls Yes Yes Yes
Location dummies Yes Yes Yes
Joint F-statistic 6.9*** 8.2*** 7.98***
R2 0.073 0.086 0.116
N 5,295 5,295 3,395

Note: Standard errors clustered at the enumeration area-level are reported in parentheses. Asterisks ***, **, and * refer to significance at the 1%, 5%, and

10% levels, respectively. Other controls include use of fertilizer, herbicide and pesticide, plot management, intercropping and soil fertility status, ownership

of mobile phones, access to extension, access to credit, membership in cassava growers’ association, membership in informal saving and credit institutions,

membership in cooperatives, livestock size in TLU, age, education, household size, and sex. Location dummies are as follows: north, south-west south-east

and south-south.
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Nonetheless, we present an alternative ro-
bustness check based on the approach pro-
posed by Conley, Hansen, and Rossi (2012).
This approach allows bounding effects in sit-
uations where the exclusion restriction need
not be precisely held (Clarke and Matta
2017). Therefore, with some assumptions, the
above method allows for consistent estima-
tion of treatment effects when unobserved
heterogeneities are present and appropriate
exclusion restrictions are not met strictly.
Our robustness check results are reported in
table 8. Lower and upper bound effects sug-
gest that our IV estimates are consistent.

Discussion and Conclusions

It is widely recognized that improved agricul-
tural technologies play a critical role in agri-
cultural transformation and economic growth
in developing countries. The dissemination
and diffusion of improved crop varieties has
been cited as the primary pathway through
which technological change in the agricul-
tural sector can bring about productivity
gains (Gollin, Stephen, and Richard 2002).
Understanding how and why households
adopt improved varieties and their subse-
quent effects on productivity gains is, there-
fore, important to disseminate technologies
that are appropriate to the conditions of
smallholder farmers. This article combined a
household survey and a DNA-fingerprinting-
based varietal identification approach to an-
swer the above policy-relevant questions. In
particular, we used adoption status from
DNA-fingerprinted data as a benchmark and
examined to what extent misclassification
biases parameter estimates of adoption on
productivity. Furthermore, this article com-
pared the rates of misclassification from tra-
ditional household surveys using DNA-
fingerprinted adoption data as a benchmark.
Such a validation exercise is particularly im-
portant for the impact evaluation literature

since most adoption studies rely on house-
hold surveys for measuring the impact of
adoption on a range of outcome variables of
interest. Our results show that both false pos-
itive and false negative responses are preva-
lent. However, the incidence of false negative
is more than twice that of false positive. This
suggests that traditional household surveys
are more likely to underestimate adoption
rates. Moreover, we show that misreporting is
not exogenous to household characteristics
and largely depends on the educational level
of the respondents and their access to struc-
tural sources of information.

Our results show that the estimated effects
of adoption on productivity in the presence
of misclassification are biased. Our results
further suggest that the presence of a well-
functioning seed system is crucial as misclas-
sification is more likely to be lower and hence
the effect of adoption on a range of outcome
variables of interest can be estimated consis-
tently. For example, our survey shows that a
formal seed market for cassava is almost non-
existent in rural Nigeria, and more than 70%
of the farmers rely on social networks
(friends, relatives, and neighbors) for access
to cassava planting material. Survey designs
also need to take into account the fact that
farmers rely on informal seed systems and
should employ a variety of data collection
techniques to validate information on adop-
tion. These techniques include asking farmers
not only about the type of varieties they grow
but also about the source of the planting ma-
terial. Training farmers on varietal identifica-
tion using social networks and a more
efficient extension delivery system may im-
prove farmers’ awareness about the varieties
they grow in their plots.

In terms of impact evaluation, estimating
impact using a higher level of aggregation
would be less biased in the presence of mis-
classification. For example, defining adoption
at the household level “if a farmer grows at
least one improved variety” would introduce
less misclassification compared to measuring
adoption at the plot level “if a farmer grows
improved variety in a specific plot.” A plot-
level/variety-level model would be more pre-
cise in the absence of misclassification as ob-
served/unobserved plot-level heterogeneities
are accounted for. However, misclassification
in treatment status is likely to be more pro-
nounced as farmers are more likely to be
wrong in identifying the type of variety in
some of the plots, especially when different

Table 8. Robustness Check Results

Self-reported
Adoption Data

DNA-fingerprinted
Adoption Data

Lower
bound

0.47 0.59

Upper
bound

0.50 0.62

Wossen et al. Estimating the Productivity Impacts of Technology Adoption in the Presence of Misclassification 13

Downloaded from https://academic.oup.com/ajae/advance-article-abstract/doi/10.1093/ajae/aay017/4972837
by ILRI user
on 17 April 2018

Deleted Text: to 
Deleted Text: 3. 
Deleted Text: c
Deleted Text: In t
Deleted Text: ,
Deleted Text: we 
Deleted Text: fingerprinting 
Deleted Text: .


varieties are grown in several plots. As such,
estimating adoption at the varietal/plot level
probably suffers the most from misclassifica-
tion. The fact that most adoption studies
were conducted at the varietal/plot level
raises concerns about the accuracy of param-
eter estimates, given the level of misclassifica-
tion found in this validation study.

Despite its advantage, the use of DNA-
fingerprinting has cost implications at differ-
ent levels. This involves costs associated with
the construction of the reference library, lo-
gistics for sample collection in the field, DNA
extraction, genotyping, and data analysis for
varietal identification (Kosmowski et al.
2016; Maredia et al. 2016). In this case study,
the cost of DNA-fingerprinting was about
$74/household (note that this cost does not
include fixed costs associated with the con-
struction of the reference library since it was
constructed as part of a previous project. In
addition, the cost does not capture salary-re-
lated costs accurately). In our application, the
benefits associated with DNA-fingerprinting
are measured by the added precision on pro-
ductivity estimates. If all farmers who believe
they are adopters (albeit falsely) are willing
to grow improved varieties, the use of DNA-
fingerprinting will bring false positive sub-
jects on board. At the same time, the false
negative subjects will adjust their behavior.
Hence, the expected economic benefit/
household is roughly the dollar value of the
correct treatment effect estimate multiplied
by the proportion of false positives, plus the
dollar value of the behavioral adjustment ef-
fect estimate multiplied by the proportion of
false negatives. Given our parameter esti-
mates in tables 7 and the average price of
$0.1/kg for fresh cassava roots, the benefits/
household from the use of DNA-
fingerprinting is about $87.5. This results in a
benefit-cost ratio of about 1.17. Thus, the
short-run economic gain of using DNA-
fingerprinting is marginally positive.
Moreover, the cost of undertaking DNA-
fingerprinting is likely to be cheaper in the fu-
ture due to a rapidly declining cost of geno-
typing (Maredia et al. 2016). Therefore, our
estimates are likely to be a lower bound.

For our main empirical analysis, we relied
on self-reported production values. However,
estimating the production of cassava from a
given plot is notoriously difficult due to con-
tinuous harvesting and lack of harvest record-
keeping by farmers. The nature of the crop
might therefore make self-reported

production values prone to measurement er-
ror. Moreover, farmers often use local pro-
duction units, and converting production
values to standard units is also prone to
errors (Gourlay, Kilic, and Lobell 2017). If
self-reported production values are measured
with errors and if such errors are systematic
(if farmers that misreported adoption status
also misreport production values), then this
error may introduce bias. In our data, we did
not find this to be the case. For example,
farmers that report improved varieties as lo-
cal varieties should report a lower production
value in the presence of systematic bias.
However, this group of farmers did not un-
derreport their production value as they
reported a significantly higher production
value compared to actual non-adopters.
Despite the above assertion from our data,
measurement errors in self-reported produc-
tion data may still be non-classical. Future re-
search using full crop cutting could,
therefore, be important to understand the ef-
fect of such measurement errors.

Supplementary material

Supplementary material is available online at
American Journal of Agricultural Economics
online.
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